ВЕЧНЫЙ ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ -ГЕНЕРАТОР
|
Упрощенная конструкция электромагнитного двигателя- генератора (ЭМДГ) такого типа и его электрическая часть приведены на рис. 1. Она состоит из трех основных узлов –из непосредственно МД с электромагнитом на статоре и ПМ на роторе и электромеханического генератора на одном валу с МД. Устройство МД состоит из статорного статического электромагнита 1, выполненного на кольцевом с вырезанным сегменте или на дуговом магнитопроводе 2 с индуктивной катушкой 3 этого электромагнита и присоединенным к ней электронным коммутатором реверса тока в катушке 3 и постоянного магнита (ПМ) 4, жестко размещенного на роторе 5 в рабочем зазоре этого электромагнита 1. Вал вращения ротора 5 ЭМД соединен муфтой с валом 7 электрогенератора 8. Устройство снабжено простейшим регулятором -электронным коммутатором 6, (автономным инвертором), выполненным по схеме простого мостового полууправляемого автономного инвертора, электрически присоединенного по выходу к индуктивной обмотке 3 электромагнита 2 а по входу электропитания - к автономному источнику электроэнергии 10. Причем реверсивная индуктивная обмотка 3 электромагнита 1 включена в диагональ переменного тока этого коммутатора 6 а по цепи постоянного тока этот коммутатор 6 присоединен к буферному источнику постоянного тока 10, например к аккумуляторной батарее(АБ) Электрический выход электромашинного генератора 8 присоединен либо непосредственно к обмоткам индуктивной катушки 3, либо через промежуточный электронный выпрямитель(не показан )к буферному источнику постоянного тока (типа АБ) 7. Мостовой простейший электронный коммутатор (автономный инвертор) выполнен на 4-х полупроводниковых вентилях, содержит в плечах моста два силовых транзистора 9 и два не управлямых бесконтактных ключа односторонней проводимости (диода)10. |
|
Рис.1 Электромагнитный мотор-генератор с ПМ на роторе, внешним электромагнитом переменного тока на статоре и электрогенератором на валу магнитного ротора |
На электромагнитном статоре 1 этого МД размещены также два датчика 11 положения магнита ПМ 5 ротора 6, вблизи траектории его движения 15 причем в качестве датчика положения ПМ-магнита 5 ротора использованы простые контактные датчики напряженности магнитного поля – герконы. Эти датчики положения 11 магнита 4 ротора 5 размещены в квадратуре - один датчик размешен возле торца соленоида с полюсами а второй- со сдвигом на 90 градусов (герконовые реле), вблизи траектории вращения ПМ5 ротора 6. Выходы этих датчиков положения 11 ПМ 5 ротора -герконовых реле присоединены через усилительно- логическое устройство 12 на управляющие входы транзисторов 9. К выходной обмотке электрогенератора 8 присоединена через выключатель (не показан) полезная электрическая нагрузка 13. В электрической цепи коммутатора 6 и цепи электропитания катушки 3 имеется элементы защиты и управления, в частности автоматический переключатель от пускового блока постоянного тока на полное электропитание от электрогенератора 8 ( не показаны )Отметим основные конструктивные особенности такого МД по сравнению с аналогами:
Применен многовитковый экономичный низкоамперный дуговой электромагнит.
Постоянный магнит 4 ротора 5 вращается в зазоре дугового электромагнита 1именно магнитными силами притягивания – отталкивания ПМ 5 вследствии изменения магнитной полярности магнитных полюсов в зазоре этого электромагнита при циклическом переключения (реверсе) направления тока в катушке 3 электромагнита 1 от коммутатора 5 по команде датчиков положения 11 ПМ магнита 4 ротора 5.Отметим также, что ротор 5 целесообразно делать массивным из немагнитного материала –для выполнения им полезной функции маховика- инерциоида.
Обратимый электромагнитный двигатель с внешним ПМ на роторе
Рис.2. Обратимый ЭМДГ с внешним МП- магнитным ротором (неполная конструкция ) Обозначения: |
Рис.3 Фото простейшего макета ЭМДГ с внешним ПМ ротором В принципе, возможен и обратимый вариант конструкции ЭМД, в котором ротор с постоянным магнитом ПМ на ободе размещен снаружи электромагнита. Ранее такой вариант обратимого ЭМД автором статьи был разработан, создан и успешно опробован в работе -причем еще в 1986 г. Ниже , на рис.2,3 приводится также упрощенная конструкция такого апробированного ранее ЭМДГ, описанная ранее в статьях автора /2-3/ Конструкция (неполная)макета простейшего ЭМД с внешним постоянным магнитом на роторе и со снятым электромагнитом статора ЭМД, показана на фото(рис.3). В реалии электромагнит размещен штатно в центре цилиндрического диэлектрического немагнитного прозрачного цилиндра с верхней крышкой, на которой крепится вал вращения данного ЭМД .. Коммутатор и прочая электрика на фото не показаны. |
Описание работы «вечного» электромагнитного мотор -генератора (рис1)
Устройство – данный вечный электромагнитный мотор – генератор (рис.1) работает следующим образом.
Запуск и разгон магнитного ротора ЭМДГ до установившейся скорости
Запуск ЭМДГ осуществляем подачей электрического тока в катушку 3 электромагнита 2 от блока электропитания 10. Исходное положение магнитных полюсов постоянного магнита 4 ротора перпендикулярное зазору электромагнита 2 Полярность магнитных полюсов электромагнита возникает при этом такая, что постоянный магнит 4 ротора 5 начинает поворачиваться на своей оси вращения 16,магнитными силами , притягиваясь своими магнитными полюсами к противоположным магнитным полюсом электромагнита 2. В этот момент совпадения разноименных магнитных полюсов магнита 4 и торцов в зазоре электромагнита 2 ток в катушке 3 выключают по команде магнитного герконового реле ( или синусоида этого тока проходит через ноль) и по инерции массивный ротор проходит эту мертвую точку его траектории вместе с ПМ 4. После этого изменяют направление тока в катушке 3 и магнитные полюса электромагнита 2 в этом рабочем зазоре становятся одноименными с магнитными полюсами постоянного магнита 4. В результате силами магнитного отталкивания одноименных магнитных полюсов –постоянный магнит 4 ротора и сам ротор получают дополнительный ускоряющий момент, действующий в направлении вращения ротора в ту же прежнюю сторону. После достижения положения магнитных полюсов ПМ ротора – по мере его вращения –вдоль магнитного меридиана, в катушке 3 вновь изменяют направления тока по команде второго магнитного датчика положения 11, вновь возникает реверс магнитных полюсов электромагнита 2 в рабочем зазоре и постоянный магнит 4 снова начинает притягиваться к ближайшим по направлению вращения разноименным магнитным полюсам электромагнита 2 в его зазоре. И далее процесс разгона ПМ 4 и ротора - путем цикличного реверса электрического тока в катушке 3 цикличным переключением транзисторов 8 коммутатора 7 от датчиков положения 11 ПМ ротора многократно повторяется циклично. Причем одновременно по мере ускорения ПМ 4 и ротора 5 автоматически возрастает и частота реверсов электрического тока в катушке 3, благодаря наличию в этой электромеханической системе положительной обратной связи по цепи через коммутатор и датчики положения ПМ 4 ротора.
Отметим, что направление электрического тока в катушке 3 (на рис. 1 показано стрелками) изменяется в зависимости от того, какой из транзисторов 8 коммутатора 7 открыт. Изменением частоты переключения транзисторов изменяем частоту переменного тока в катушке 3 электромагнита и соответственно изменяем и скорость вращения ПМ 4 ротора 5.
ВЫВОД. Таким образом, постоянный магнит ротора за полный оборот вокруг своей оси практически непрерывно испытывает однонаправленный ускоряющий момент от силового магнитного взаимодействия с магнитными полюсами электромагнита, который и приводит его во вращение и постепенно разгоняет его и электрический генератор на общем валу вращения до заданной установившейся скорости вращения.
Прямой метод электрического управления обмоткой статорного электромагнита ЭМДГ в зависимости от положения ПМ ротора
Дополнительным новшеством для обеспечения такого метода управления обмоткой электромагнита 3 МД переменным током требуемой частоты и фазы непосредственно с выхода электрогенератора переменного тока в установившемся режиме работы является введение в такой системе магнитный двигатель – электрогенератор параллельная резонансная L-C цепь – в контуре две индуктивности –от катушки 3 и статорной обмотки генератора и дополнительная электроемкость введение в выходную электроцепь электрогенератора 8 дополнительного электрического конденсатора 17 для обеспечения его самовозбуждения и последующего электрического L-C резонанса, для снижения электрических потерь и для предельно простого управления индуктивностью 3 переменным током с нужной фазой напряжения и тока непосредственно от генератора 8 установившемся режиме работы этой сложной электромагнито-электромеханической системы «мотор- генератор».
Полностью автономный режим («вечный двигатель»)ЭМДГ
Совершенно очевидно, что для обеспечения работы данного устройства в режиме «вечного двигателя» необходимо получить от постоянных магнитов ротора свободную энергию, достаточную для выработки электрогенератором на валу ЭМД требуемой для этой полностью автономной работы системы- электроэнергии. Поэтому важнейшим условием является обеспечение достаточного по величине крутящего момента магнитного ротора этого МД для выработки электрогенератором на его валу достаточного количества электроэнергии, которого бы с избытком хватило и на электропитание катушки электромагнита ,и на полезную нагрузку заданной величины и на компенсацию различных неизбежных потерь в такой электромеханической системы с ПМ на роторе. После раскрутки ПМ 4 и достижения ротором 5 номинальных оборотов, электропитание катушки 3 переключаем осуществляем уже непосредственно от электрогенератора или через дополнительный преобразователь напряжения а стартерный источник электроэнергии либо вообще отключаем либо переводим его в режим подзарядки от электрического генератора на валу этого ЭМД.
Это важное условие работы МД в режиме «вечного двигателя» может быть выполнено только при одновременном выполнении как минимум шести условий:
Применение в МД современных сильных ниобиевых постоянных магнитов, обеспечивающих максимальный момент вращения такого ротора при минимальных габаритах ПМ.
Применение на статоре МД эффективной сверхмалозатратной схемы электромагнита МД за счет предельно высокого количества витков в обмотке электромагнита и правильного эффективного конструирования его магнитопровода и обмотки
Необходимость пускового устройства и стартерного источника электроэнергии для запуска и разгона МД с электропитанием катушки электромагнита от коммутатора
Правильный алгоритм управления электрическим током в обмотке электромагнита по направлению, величине в зависимости от положения ПМ ротора
Согласование электрических параметров электрогенератора и обмотки электромагнита
Правильный алгоритм коммутации цепей электропитания обмотки электромагнита при включения цепи электрогенератора в цепь электропитания обмотки электромагнита и перевода пускового источника электроэнергии, например АБ из режима разрядки в режим его электрической подзарядки.
Все, кто достаточно хорошо знакомы с принципом действия и устройством электромагнита, наверняка знают, что электромагнит притягивает посторонние ПМ или металлы именно на постоянном токе. Причем многие его выходные параметры, например, подъемная сила электромагнита и его электропотребление, а значит и кпд( в смысле энергетической эффективности ватт/на кг подымаемого им груза, определяются в основном, конструкцией, магнитными характеристиками магнитопровода и параметрами обмотки электромагнита.
Известно, что любой магнитопровод обладает магнитной
петлей гистерезиса, и что его магнитная энергия его при подаче тока в
обмотку электромагнита, определяется произведением ВхН, где В-
магнитная индукция а
Н коэрцитивная сила
В случае нашего ЭМД существуют цикличные интервалы его работы во времени
в которые по обмотке электромагнита протекает знакопостоянный ток,
именно поэтому к данному электромагниту тоже вполне применима известная
методика расчета электромагнитов.
Зададим тяговое усилие нашего электромагнита порядка 100 Н =10 кг. и рассчитаем примерно некоторые конструктивные параметры этого электромагнита при рабочем зазоре электромагнита порядка 2 см.
Тяговая сила , развиваемая электромагнитом, вычисляется по формуле полученной на основе баланса энергии (энергетическая формула). В условиях равномерного распределения индукции в рабочем воздушном зазоре эта формула преобразуется в формулу Максвелла:
- это индукция в воздушном зазоре, Тл.
- площадь полюса .
- магнитная проницаемость воздуха.
Задав
1,1 Тл, можно определить примерную площадь сечения магнитопровода
= 0,00103802 .
Среднее значение магнитной индукции в стали магнитопровода:
= 1,1 Тл.
где
1 – коэффициент рассеивания магнитного потока.
По основной кривой намагничивания для низкоуглеродистой стали, находим среднее значение магнитной напряженности в стали магнитопровода.
600. При правильном конструировании электромагнита можно достигнуть максимума его силы магнитного силового взаимодействия его магнитных полюсов с сильными постоянными магнитами ротора ЭМДГ при минимуме электропотребления обмоткой данного электромагнита , что и обеспечивает избыточную мощность на валу нашего электромагнитного ЭМДГ.
Рассмотрим алгоритм переключения электрического тока в катушке при наличии одного полосового магнита на роторе ЭМД за один оборот ротора(рис.3). Для обеспечения эффективной работы данного ЭМД (конструкция рис.1) с помощью совмещенных диаграмм положения ротора и направления протекания тока в обмотке 3 статорного электромагнита 1. Как следует из этих диаграмм, сущность правильного алгоритма управления электромагнитом 1 ЭМД состоит в том, что один полный оборот Пм ротора электрический ток в индуктивной обмотке 3 электромагнита совершает два полных колебания.. Т.е., проще говоря, частота электрического тока, подаваемая в обмотку3 электромагнита 1посредством присоединенного к ней электронного коммутатора, управляемого по командам датчиков положения ПМ ротора, равна двойной частоте вращения ротора, а фаза этого электрического тока строго синхронизирована с положением ПМ ротора. ЭМД. Поскольку переключение коммутатором направления тока в обмотке 3 (реверс тока) происходит строго на магнитном экваторе ПМ при совпадении магнитных полюсов ПМ и магнитных полюсов торцов магнитопровода в рабочем зазоре магнитопровода 2 электромагнита 1, то в итоге, за один полный оборот ПМ ротора, он испытывает постоянно ускоряющий однонаправленный момент вращения, причем дважды от притяжения разноименных магнитных полюсов торцов магнитопровода электромагнита и ПМ ротора, и дважды –за счет магнитных сил отталкивания их одноименных магнитных полюсов. Выбор и расчет элементов и оборудования для «вечного» ЭМДГ В настоящем разделе статьи кратко обсуждаются важные вопросы и основы конструирования и выбора основных элементов ЭМДГ – постоянных магнитов, электромагнита ЭМД и электрогенератора, от которых и зависит нормальная работа ЭМДГ в режиме «вечного двигателя-генератора». Примечание: Детально выбранные и расчетные параметры конструкции действующего макета ЭМД, постоянных магнитов ротора и параметры оригинального электромагнита в статье пока полностью не раскрываются (НОУ-ХАУ). Автор заинтересован в деловых предложениях о сотрудничестве от инвесторов для разработки ,проектирования и изготовление данного опытно- промышленного образца данного эффективного электромагнитного мотор- генераторного устройства по ТЗ заказчика на заданную мощность. |
|
Рис.4 Временная диаграмма работы электронного коммутатора для реверса тока в обмотке статорного электромагнита за один оборот ПМ ротора |
|
Рис.5- к объяснению алгоритма работы электромагнита ЭМД (рис.1)
3.4 -магнитные полюса торцов дугового магнитопровода 2 электромагнита 1 |
Постоянные магниты характеризуются тремя основными параметрами: остаточной магнитной индукцией Вr, коэрцитивной силой Нc и энергетическим произведением BH.
Вr определяет величину магнитного потока. Если в генератор поставить магниты с большей магнитной индукцией, то пропорционально (грубо говоря) увеличится напряжение на обмотках, а значит и мощность генератора.
Нc определяет магнитное напряжение. Если в генератор
поставить магниты с большей коэрцитивной силой, то магнитное поле сможет
преодолевать большие воздушные зазоры. И сможет "поддержать ток" в
большем числе виков статора. При переделке промышленного генератора на
постоянные магниты мотать добавочные витки обычно некуда, поэтому
повышенная коэрцитивная сила полезна при изготовлении самодельных
генераторов со статором не имеющим железа. Чтобы "пробить" значительные
воздушные промежутки без большой Нc не обойтись. Редкоземельные магниты
лидеры по этому показателю. BH вычисляется в расчете на 1 м3 магнитов,
Это произведение получается меньше чем просто произведение Вr на Нc. По
величине BH можно судить о том, насколько будут малы габариты магнитной
системы.
Теперь о том, какие бывают магниты. Для изготовления самодельных
магнитных моторов -генераторов целесообразно применять только два вида
магнитов: ферритовые, которые используются в динамиках и самые мощные в
настоящее время РЗМ (редкоземельный металл) магниты из неодима.
Ориентировочные характеристики их такие (учтите, что разброс параметров
очень большой, даны некие средние цифры):
Феррит-бариевые магниты: 4500 кг/м3; Вr = 0,2 - 0,4 Тл; Нc = 130 - 200 кА/м; BH = 10 - 30 кДж/м3; цена 100 - 400 руб/кг; максимальная температура 250 градусов.
Феррит-стронциевые магниты: 4900 кг/м3; Вr = 0,35 - 0,4 Тл; Нc = 230 - 250 кА/м; BH = 20 - 30 кДж/м3; цена 100 - 400 руб/кг; максимальная температура 250 градусов.
РЗМ магниты Nd-Fe-B: 7500 кг/м3; Вr = 0,8 - 1,4 Тл; Нc = 600 - 1200 кА/м; BH = 200 - 400 кДж/м3; цена 2000 - 3000 руб/кг; максимальная температура 80 - 200 градусов.
Если посчитать стоимость одного кубометра магнита и затем разделить на BH, на количество запасенных там джоулей, то окажется, что бариевые магниты раза в два дешевле неодимовых по стоимости энергии, имеющейся в магнитах. Но этот выигрыш "съедается" большими габаритами генератора и более тяжелой обмоткой, железом. Поэтому применять в самодельном генераторе дорогие неодимовые магниты довольно выгодно. А по мере того, как они дешевеют, то неодимовые магниты становятся вне конкуренции.
Возникает вопрос , какой же электрогенератор выбрать для применения в этом электромагнитном мотор- генераторе ? Например на этапе его реального макетирования ? Вполне логично взять для этих целей стандартный автомобильный электрогенератор с системой управления и узлом согласования его параметров с параметрами бортовой автомобильной аккумуляторной батареи (АБ).
В указанных аналогах ЭМДГ для вращения постоянных магнитов ротора производится их импульсное электромагнитное отталкивание в момент прохождении ими над полюсами электромагнитов. А в остальное время при обороте ротора эти катушки работаю в генераторном режиме, производят электроэнергию, которая возвращается в бортовой аккумулятор. В результате, ПМ ротора испытывает торможение, причем из-за этого несовершенного алгоритма управления электромагнитами статора ПМ ротора не получает достаточный вращающий момент, т.е. не доиспользуется его скрытая магнитная энергия. Поэтому на серийных китайских электровелосипедах, и на иных электровелосипедах с электромагнитным мотор-колесом Шкондина максимальная скорость движения ограничена скоростью всего порядка 25км/час. Это возникает потому что они одновременно с работой в двигательном режиме начинают одновременно работать и в генераторном режиме т.е.ПМ ротора конкретно начинают тормозить. В нашем электромагнитном моторе - генераторе с электромагнитом такого тормозного режима нет, поскольку за счет правильного алгоритма управления обмоткой электромагнита, ПМ магнитного ротора испытывают непрерывно ускоряющий момент вращения как от магнитных сил отталкивания так и от притяжения –Пм ротора и магнитных полюсов статорного электромагнита, поскольку частота переключения(реверса ) тока в обмотке электромагнита в два раза превышает частоту вращения ПМ ротора. Поэтому ПМ ротора работает на полную силу и непрерывно подкручивают ротор в отличии от мотор колес Шкондина и в отличии от магнитного мотор генератора Адамса Нагрузка вала ЭМД осуществляется именно стандартным электрогенератором вращения Однако если заменить этот стандартный электрогенератор на оригинальный с бифилярными индуктивными статорными обмотками, то можно существенно устранить влияние противоЭДС и в разы снизить механическую нагрузку на вал ЭМД.
Смотри продолжение: Вечный шторочный электромагнитный двигатель-генератор (вшэмдг)